3.1.90 \(\int \sqrt {e^{a+b x}} x^4 \, dx\) [90]

Optimal. Leaf size=91 \[ \frac {768 \sqrt {e^{a+b x}}}{b^5}-\frac {384 \sqrt {e^{a+b x}} x}{b^4}+\frac {96 \sqrt {e^{a+b x}} x^2}{b^3}-\frac {16 \sqrt {e^{a+b x}} x^3}{b^2}+\frac {2 \sqrt {e^{a+b x}} x^4}{b} \]

[Out]

768*exp(b*x+a)^(1/2)/b^5-384*x*exp(b*x+a)^(1/2)/b^4+96*x^2*exp(b*x+a)^(1/2)/b^3-16*x^3*exp(b*x+a)^(1/2)/b^2+2*
x^4*exp(b*x+a)^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2207, 2225} \begin {gather*} \frac {768 \sqrt {e^{a+b x}}}{b^5}-\frac {384 x \sqrt {e^{a+b x}}}{b^4}+\frac {96 x^2 \sqrt {e^{a+b x}}}{b^3}-\frac {16 x^3 \sqrt {e^{a+b x}}}{b^2}+\frac {2 x^4 \sqrt {e^{a+b x}}}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[E^(a + b*x)]*x^4,x]

[Out]

(768*Sqrt[E^(a + b*x)])/b^5 - (384*Sqrt[E^(a + b*x)]*x)/b^4 + (96*Sqrt[E^(a + b*x)]*x^2)/b^3 - (16*Sqrt[E^(a +
 b*x)]*x^3)/b^2 + (2*Sqrt[E^(a + b*x)]*x^4)/b

Rule 2207

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*
((b*F^(g*(e + f*x)))^n/(f*g*n*Log[F])), x] - Dist[d*(m/(f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !TrueQ[$UseGamma]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {align*} \int \sqrt {e^{a+b x}} x^4 \, dx &=\frac {2 \sqrt {e^{a+b x}} x^4}{b}-\frac {8 \int \sqrt {e^{a+b x}} x^3 \, dx}{b}\\ &=-\frac {16 \sqrt {e^{a+b x}} x^3}{b^2}+\frac {2 \sqrt {e^{a+b x}} x^4}{b}+\frac {48 \int \sqrt {e^{a+b x}} x^2 \, dx}{b^2}\\ &=\frac {96 \sqrt {e^{a+b x}} x^2}{b^3}-\frac {16 \sqrt {e^{a+b x}} x^3}{b^2}+\frac {2 \sqrt {e^{a+b x}} x^4}{b}-\frac {192 \int \sqrt {e^{a+b x}} x \, dx}{b^3}\\ &=-\frac {384 \sqrt {e^{a+b x}} x}{b^4}+\frac {96 \sqrt {e^{a+b x}} x^2}{b^3}-\frac {16 \sqrt {e^{a+b x}} x^3}{b^2}+\frac {2 \sqrt {e^{a+b x}} x^4}{b}+\frac {384 \int \sqrt {e^{a+b x}} \, dx}{b^4}\\ &=\frac {768 \sqrt {e^{a+b x}}}{b^5}-\frac {384 \sqrt {e^{a+b x}} x}{b^4}+\frac {96 \sqrt {e^{a+b x}} x^2}{b^3}-\frac {16 \sqrt {e^{a+b x}} x^3}{b^2}+\frac {2 \sqrt {e^{a+b x}} x^4}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 45, normalized size = 0.49 \begin {gather*} \frac {2 \sqrt {e^{a+b x}} \left (384-192 b x+48 b^2 x^2-8 b^3 x^3+b^4 x^4\right )}{b^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[E^(a + b*x)]*x^4,x]

[Out]

(2*Sqrt[E^(a + b*x)]*(384 - 192*b*x + 48*b^2*x^2 - 8*b^3*x^3 + b^4*x^4))/b^5

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 43, normalized size = 0.47

method result size
gosper \(\frac {2 \left (b^{4} x^{4}-8 b^{3} x^{3}+48 b^{2} x^{2}-192 b x +384\right ) \sqrt {{\mathrm e}^{b x +a}}}{b^{5}}\) \(43\)
risch \(\frac {2 \left (b^{4} x^{4}-8 b^{3} x^{3}+48 b^{2} x^{2}-192 b x +384\right ) \sqrt {{\mathrm e}^{b x +a}}}{b^{5}}\) \(43\)
meijerg \(-\frac {32 \,{\mathrm e}^{-\frac {5 a}{2}-\frac {b x \,{\mathrm e}^{\frac {a}{2}}}{2}} \sqrt {{\mathrm e}^{b x +a}}\, \left (24-\frac {\left (\frac {5 b^{4} x^{4} {\mathrm e}^{2 a}}{16}-\frac {5 b^{3} x^{3} {\mathrm e}^{\frac {3 a}{2}}}{2}+15 b^{2} x^{2} {\mathrm e}^{a}-60 b x \,{\mathrm e}^{\frac {a}{2}}+120\right ) {\mathrm e}^{\frac {b x \,{\mathrm e}^{\frac {a}{2}}}{2}}}{5}\right )}{b^{5}}\) \(84\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*exp(b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(b^4*x^4-8*b^3*x^3+48*b^2*x^2-192*b*x+384)*exp(b*x+a)^(1/2)/b^5

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 60, normalized size = 0.66 \begin {gather*} \frac {2 \, {\left (b^{4} x^{4} e^{\left (\frac {1}{2} \, a\right )} - 8 \, b^{3} x^{3} e^{\left (\frac {1}{2} \, a\right )} + 48 \, b^{2} x^{2} e^{\left (\frac {1}{2} \, a\right )} - 192 \, b x e^{\left (\frac {1}{2} \, a\right )} + 384 \, e^{\left (\frac {1}{2} \, a\right )}\right )} e^{\left (\frac {1}{2} \, b x\right )}}{b^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*exp(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

2*(b^4*x^4*e^(1/2*a) - 8*b^3*x^3*e^(1/2*a) + 48*b^2*x^2*e^(1/2*a) - 192*b*x*e^(1/2*a) + 384*e^(1/2*a))*e^(1/2*
b*x)/b^5

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 43, normalized size = 0.47 \begin {gather*} \frac {2 \, {\left (b^{4} x^{4} - 8 \, b^{3} x^{3} + 48 \, b^{2} x^{2} - 192 \, b x + 384\right )} e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )}}{b^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*exp(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

2*(b^4*x^4 - 8*b^3*x^3 + 48*b^2*x^2 - 192*b*x + 384)*e^(1/2*b*x + 1/2*a)/b^5

________________________________________________________________________________________

Sympy [A]
time = 0.05, size = 51, normalized size = 0.56 \begin {gather*} \begin {cases} \frac {\left (2 b^{4} x^{4} - 16 b^{3} x^{3} + 96 b^{2} x^{2} - 384 b x + 768\right ) \sqrt {e^{a + b x}}}{b^{5}} & \text {for}\: b^{5} \neq 0 \\\frac {x^{5}}{5} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*exp(b*x+a)**(1/2),x)

[Out]

Piecewise(((2*b**4*x**4 - 16*b**3*x**3 + 96*b**2*x**2 - 384*b*x + 768)*sqrt(exp(a + b*x))/b**5, Ne(b**5, 0)),
(x**5/5, True))

________________________________________________________________________________________

Giac [A]
time = 1.76, size = 43, normalized size = 0.47 \begin {gather*} \frac {2 \, {\left (b^{4} x^{4} - 8 \, b^{3} x^{3} + 48 \, b^{2} x^{2} - 192 \, b x + 384\right )} e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )}}{b^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*exp(b*x+a)^(1/2),x, algorithm="giac")

[Out]

2*(b^4*x^4 - 8*b^3*x^3 + 48*b^2*x^2 - 192*b*x + 384)*e^(1/2*b*x + 1/2*a)/b^5

________________________________________________________________________________________

Mupad [B]
time = 0.13, size = 45, normalized size = 0.49 \begin {gather*} \sqrt {{\mathrm {e}}^{a+b\,x}}\,\left (\frac {768}{b^5}-\frac {384\,x}{b^4}+\frac {2\,x^4}{b}-\frac {16\,x^3}{b^2}+\frac {96\,x^2}{b^3}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*exp(a + b*x)^(1/2),x)

[Out]

exp(a + b*x)^(1/2)*(768/b^5 - (384*x)/b^4 + (2*x^4)/b - (16*x^3)/b^2 + (96*x^2)/b^3)

________________________________________________________________________________________